
Designing the Control of a UAV Fleet

with Model Checking
Technical Report OSU-CISRC-1/04-TR06

Christopher A. Bohn∗

Paolo A.G. Sivilotti
Bruce W. Weide

Department of Computer and Information Science
The Ohio State University

{bohn,paolo,weide}@cis.ohio-state.edu

Abstract

We model the problem of unmanned aerial vehicles searching for mov-
ing targets as a pursuer-evader game in which the pursuers have a speed
advantage over the evaders but are incapable of determining an evader’s
location unless a pursuer occupies the same location as that evader. By
treating the players as nondeterministic finite automata, we can model
the game and use it as the input for a model checker. By specifying that
there is no way to guarantee the pursuer can locate the evader, the model
checker will either confirm that this is the case, or it will provide a coun-
terexample showing one search pattern for the pursuer that will guarantee
the evader must eventually be caught. As an ongoing effort to reduce the
time to find pursuer-winning strategies, we also present heuristics to limit
the state space of the game models.

1 Introduction

The challenge of an airborne system locating an object on the ground is a com-
mon problem for many applications, such as tracking, search and rescue, and
destroying enemy targets during hostilities. If the target is not facilitating the
search, or is even attempting to foil it by moving to avoid detection, the difficulty
of the search effort is greater than when the target aids the search. In recent
years, interest in using unmanned aerial vehicles (UAVs) for “the dull, the dirty,
and the dangerous” combat and non-combat scenarios has grown, as evidenced
by the US Department of Defense’s (DoD) investment in UAV development, pro-
curement, and operations: $3 billion in the 1990s, $1 billion from 2000–2002,
∗The views expressed in this article are those of the authors and do not necessarily reflect

the official policy of the Air Force, the Department of Defense or the US Government.

1



and a projected $10 billion by 2010 [Office of the Secretary of Defense, 2002].
Their application to the search problem is limited by the size of their sensor
footprint – indeed, the DoD has expressed concern over “the soda-straw field
of view used by current UAVs that negatively affects their ability to provide
broad SA [situational awareness] for themselves, much less for others in a for-
mation” [Office of the Secretary of Defense, 2002].

Where other researchers are addressing the problems of locating station-
ary targets [Baum, 2002, Oğraş, 2002, Zhang and Ordóñez, 2003] or of locating
moving targets with some probability of success [Kanchanavally et al., 2004],
our research is intended to address a technical hurdle for locating moving tar-
gets with certainty.

We have abstracted this problem of controlling a fleet of UAVs to meet
some search objective into a pursuer-evader game played on a finite grid. The
pursuers can move faster than the evaders, but the pursuers cannot ascertain
the evaders’ locations except by the collocation of a pursuer and evader. Fur-
ther, not only can the evaders determine the pursuers’ past and current loca-
tions, they have an oracle providing them with the pursuers’ future moves. The
pursuers’ objective is to locate all evaders eventually, while the evaders’ objec-
tive is to prevent indefinitely collocation with any pursuer [Bohn et al., 2003,
Bohn and Sivilotti, 2004]. Part of our contribution is to represent the game
as a concurrent system of finite automata and to use symbolic model check-
ing [Clarke et al., 1999] to determine whether all evaders can eventually be lo-
cated within the model; if so, we can use the model checker’s output (a sequence
of states that serve as a witness to the satisfaction/dissatisfaction of the model’s
specification) to generate a search pattern for the UAVs to follow. Using this
approach, we are able to address the problem of whether and how the UAVs
can be guaranteed to locate all of a set of moving targets.

We demonstrate that model checking can be used to suggest strategies by
which a single UAV can locate targets. Moreover, model checking can be used
to coordinate the actions of a fleet of UAVs. We also exhibit heuristics that can
reduce the size of the models enough to obtain these strategies fast enough for
on-the-fly planning.

In this chapter, we present the model of our pursuer-evader game (Section 2),
how that model can be used to generate pursuer-winning search strategies when
they exist (Section 3), our efforts to reduce the time required to generate search
strategies (Section 4), and the directions we intend to take our research (Sec-
tion 5).

2 Modeling the Game

We begin by describing the model of the pursuer-evader game. After examining
the finite automata we use to model the game, we present sufficient conditions
to guarantee that the pursuers will locate all evaders.

2



0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(a) Pursuer’s
turn

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(b) Evader’s
turn

Figure 1: Examples of movements by the pursuer and the evader. Solid circle
is the pursuer; hollow circle is the evader.

2.1 The Model

In its simplest form, the game is played on a rectilinear grid with one pursuer
and one evader taking turns to move. There are no obstacles to either the
pursuer or evader, so each can occupy any location and can transition from any
location to any adjacent location. Consider Figure 1. In Figure 1(a), the pursuer
moves three spaces north and one west on a 6× 6 board; this is followed by the
evader moving south one space in Figure 1(b). There are four basic variations
on the game’s simplest form, based on the definition of “adjacent location”. In
all four variants, the players can move in the four cardinal directions (north,
south, east, west); the variations are whether the pursuer, the evader, both,
or neither can move diagonally (northwest, northeast, southwest, southeast).
These simplifications facilitate an analysis of the required pursuer speed.

An obvious (but, it turns out, inappropriate; see Section 3.2) model for the
game is to treat the pursuers and evaders as nondeterministic finite automata
(NFAs) with each player’s state defined only by its current grid cell. Instead,
we define a model that does not explicitly include evaders. Instead, each grid
cell has a single boolean state variable cleared that indicates whether it is
impossible for an undetected evader to occupy that cell. cleared is true if
and only if no undetected evader can occupy that cell, and cleared is false if it
is possible for an undetected evader to occupy that cell. Trivially, cells occupied
by pursuers are cleared – either there’s no evader occupying that cell, or it
has been detected. A cell that is not cleared becomes cleared when and
only when a pursuer occupies it. A cleared cell ceases to be cleared when
and only when it is adjacent to an uncleared cell during the evaders’ turn to
move; if all its neighboring cells are cleared then it remains cleared.

Compare Figure 2 with Figure 1. In this hypothetical scenario, the pursuer
has cleared a region of the southwest corner of the grid, as shown by the
shaded portion of Figure 2(a) and can conclude the evader must be outside that
region. As in Figure 1(a), the pursuer moves four spaces north and west in
Figure 2(b), increasing the cleared region by three cells. Since the pursuer

3



0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(a) Before pur-
suer moves

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(b) Pursuer’s
turn

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(c) Evader’s
turn

Figure 2: Examples of changes in the possible locations for the evader. Evader
is known to be in unshaded region.

does not know where the evader is located, the cleared region must shrink
in accordance with the union of all possible moves by the evader. A move by
the evader south from the northeastern-most corner would not cause the evader
to enter a previously-cleared cell, but Figure 2(c) shows there are six ways
the evader could move from an uncleared cell into a cleared cell, and the
five cleared cells that could now be occupied by the evader may no longer be
considered cleared.

By modeling the evaders’ possible locations instead of their actual locations,
the model does not need to be modified when additional evaders are incorpo-
rated. The same model is used whether there are one, ten, or (importantly in
many practical situations) an unknown number of evaders. Henceforth, we talk
of “the evaders” without saying how many there are.

2.2 Sufficient Pursuer Qualities for Simple Game Variants

We wish to characterize the necessary and sufficient pursuer qualities for pursuer
victories in the myriad variations of the game. While we have proven sufficient
conditions for a pursuer win in general, we have yet to establish the necessary
conditions except for specific game instances.

2.2.1 One Pursuer

We have established the sufficient pursuer qualities to guarantee a pursuer win
for the simpler forms of the game. When the game is played with one pursuer
and with evaders that move 1 space/turn and do not move diagonally on a
rectilinear grid with the shorter dimension being n cells, we have shown the
existence of a search pattern that will guarantee the pursuer’s victory if the
pursuer can move n spaces per turn. If the evaders can move diagonally, then
such a pursuer-winning strategy exists if the pursuer can move n+ 1 spaces per
turn [Bohn and Sivilotti, 2004].

The formal proofs can be found in [Bohn and Sivilotti, 2004]; however we

4



shall provide here an informal operational argument. Consider the case in which
the evaders do not move diagonally and the pursuer can move n spaces/turn. As
shown in Figure 3, the pursuer can cause the number of cleared cells in a col-
umn to increase, up to the point at which all cells in that column are cleared.
The pursuer can then shift into the initial position for the next column (while
preserving the cleared cells in the previous column). By repeatedly applying
this process, eventually every cell in each column will be cleared.

We can demonstrate that a pursuer speed of n−1 spaces/turn is insufficient
in general. Consider a 2× 2 grid, and for simplicity’s sake assume the pursuer
does not move diagonally either. The pursuer is not guaranteed to find even a
single evader if the pursuer’s speed is n − 1 = 1 spaces/turn. The evaders can
avoid detection indefinitely as follows: after each move by the pursuer, move
to (or stay in) the cell diagonally opposite the pursuer. Because the pursuer
cannot move 2 spaces/turn, it cannot move to a diagonally opposite corner in a
single move; because the evaders can always view the pursuer, they can always
move to the diagonally opposite corner.

Further, we believe (but have not proved) that for all values of n ≥ 2,
n − 1 spaces/turn is an insufficient speed to assure the pursuer’s victory. This
is based on the observation that the evaders have less freedom of movement in
the boundary cells (and even less still in the corner cells), and so evaders have
increasing freedom of movement as the ratio of non-border cells to border cells
increases. And so we believe that if the pursuer is not certain to locate the
evaders at n−1 spaces/turn when all cells are corner cells, then the pursuer will
not be able to locate the evaders at n−1 spaces/turn when there are non-border
cells.

2.2.2 Multiple Pursuers

We have also turned our attention to characterizing the necessary and sufficient
pursuer qualities for a fleet of pursuers on a grid with shorter dimension n.
Clearly, if at least one pursuer moves n spaces/turn when the evaders do not
move diagonally, the pursuers can win – but we can do better. Through model
checking, we have shown that there are configurations in which all but one
pursuer can remain stationary, and the single moving pursuer can detect all
evaders even when its speed is less than n spaces/turn. More generally, if all
pursuers move at least 1 space/turn (the same speed as the evaders), then a
pursuer-winning strategy exists for k pursuers if:∑

p is a pursuer

p.speed ≥ n− k + 1 (1)

It may not be practical – or even possible – to characterize analytically the
necessary pursuer qualities for games in which there are arbitrary restrictions
on players’ movements. Instead, it may be more practical to use the model
checker, as described in Section 3, to determine whether the proposed pursuer
qualities are sufficient. As an example of the difficulty in characterizing the
necessary and sufficient conditions of a game variant in general, our analysis

5



(a) Initial conditions: cells
y + 1..n − 1 are cleared in
this column

(b) Pursuer moves n spaces

(c) Evaders move, causing
cells on the frontier to be
uncleared

(d) Pursuer moves n spaces (e) Evaders move, causing
cells on the frontier to be
uncleared; cells y..n−1 are
cleared in this column

Figure 3: Execution of the “clear-cell” algorithm when the evaders cannot move
diagonally.

6



of even the “simple” game variants was aided by model checking: informed by
tool-generated search strategies for specific game instances of a game variant,
we reanalyzed the model of that game variant and showed the sufficiency of
weaker pursuer characteristics than were indicated by our previous analysis. In
short, we learned something from the model checker.

3 Generating Search Strategies

Now that we have covered the model of the pursuer-evader game, we shall ex-
plain how we obtain pursuer-winning search strategies by using model checking.
We first offer an overview of symbolic model checking. We follow this with the
manner in which we use a symbolic model checker to obtain a sequence of com-
putation states that correspond to a series of moves the pursuers can make to
detect every evader.

3.1 Symbolic Model Checking

Model checking is a technique for verifying that finite state concurrent systems
satisfy certain properties expressed in a temporal logic. Typical examples of its
use are in verifying properties of complex digital circuit designs and communi-
cation protocols [Clarke et al., 1999].

Symbolic model checking has three features that are particularly desirable.
First is that for certain logics, such as Computational Tree Logic (CTL), a
model can be checked in time linear in the number of the model’s states; more
precisely, checking a specification f expressed as a predicate in CTL requires
O ((|S|+ |R|) · |f |) time, where S is the set of states and R is the set of transi-
tions between states in the model.

The second feature of symbolic model checking is that the model’s states are
not represented explicitly; rather, the model checker uses binary decision dia-
grams. Because of this, symbolic model checkers use less memory than explicit-
state model checkers for a given model (or, for the same memory footprint, sym-
bolic model checkers can check larger models). When first introduced, symbolic
model checking could verify models with up to 1020(∼ 266) states; subsequent
refinements have permitted the checking of models with up to 10120(∼ 2400)
states [Clarke et al., 1999].

The third feature is that if the specification being checked is not satisfied
by the model, the model checker can provide a specific counterexample showing
why the property does not hold. We make use of this last capability by modeling
the pursuer-evader game as a nondeterministic finite automaton and instructing
the model checker to prove that no matter how the pursuer moves, some evader
can successfully avoid the pursuer. If the model checker indicates this property
is true, then for the given game conditions there is no guarantee the pursuer and
an evader will be collocated. On the other hand, if the model checker indicates
the property is false, then as a counterexample, it will indicate the model’s state

7



changes that, when properly interpreted, correspond to a sequence of moves the
pursuer can make to guarantee it will locate all the evaders.

3.2 Model Checking the Game

Had we modeled all players as NFAs with state defined only by the occupied grid
cell, then we would check whether the evaders can always avoid detection. The
model checker would promptly offer the counterexample of the pursuer moving
immediately to the evaders’ locations; this is not a useful result.

Instead, we model each grid cell as cleared or uncleared, and the prop-
erty to check against this model can be described using CTL:

AG
∨

0 ≤ r < n
0 ≤ c < m

¬cleared(r, c) (2)

That is, along every computation path (“A”) beginning at the initial state,
every state (“G”) includes at least one uncleared cell. If the specification is
not satisfied, then the counterexample can be used to generate a search pattern
that will cause every cell to be cleared. When all cells are cleared, there
can be no undetected evaders.

Example models coded in the model description language for the SMV1

model checker can be found in [Bohn et al., 2003].
As reported in Section 2.2, we have determined mathematically the sufficient

pursuer speed to guarantee a pursuer victory for the simple forms of the game
on an arbitrarily-sized grid. As a sanity test, we note that the results of model
checking specific instances of these simple forms match the analytical results:
when the pursuer speed is set to what we believe to be the minimally-sufficient
speed, the pursuer has a winning search strategy; when the pursuer speed is
less, the pursuer does not have a winning search strategy. Interestingly, the
winning search strategies suggested by the model checker do not correspond to
those used in the proofs of our analysis. So, there are winning strategies other
than that of Figure 3.

Clearly, a single pursuer traveling over a rectilinear grid with no obstacles is
not a faithful model of the real world, though it is useful for investigating some
of the issues in using a model checker for our purpose. For this reason, we have
demonstrated that we can also use the model checker with a hexagonal grid,
with multiple pursuers, when the pursuer’s sensor footprint is not simply the
cell it currently occupies, or when there is terrain (modeled as cells the evaders
cannot enter and cell boundaries the evaders cannot cross).

For example, consider the terrain in Figure 4, and assume the evaders cannot
occupy the central lake, cannot traverse the sheer western wall of the crevice,
and can traverse the oblique easter wall of the crevice in only one direction.
If we model this terrain on a 4 × 6 grid, then by Equation 1, we know the
pursuers can detect all evaders if the sum of the k pursuers’ speeds is at least 3−

1http://www.cs.cmu.edu/∼modelcheck/smv.html

8



Figure 4: Example of terrain with crevice and lake.

k spaces/turn. Because of the restrictions on the evaders’ movements, however,
it is possible for a single pursuer to locate all evaders when the pursuer’s speed
is only 3 spaces/turn.

4 Performance

In this section we consider the performance of the technique described in Sec-
tion 3.2: how much time is required to obtain a winning search strategy? After
demonstrating why the method is intractable, we present three heuristics, two
of which we have implemented.

4.1 Model Checking Complexity

As stated in Section 3.1, CTL has the desirable characteristic that CTL proper-
ties can be model checked in time linear in the product of the size of the model
and the size of the specification [Clarke et al., 1999]. Unfortunately, the model
we have described has a number of states that is exponential in the size of the
grid. Specifically, for an m×n grid with k pursuers, the fastest of which moves
s spaces/turn, the number of states is:

(mn)k︸ ︷︷ ︸
pursuers’

locations

· 2mn︸︷︷︸
cells

cleared?

· (s+ 1)︸ ︷︷ ︸
“clock”

artifact

(3)

Since the number of states is exponential in the number of grid cells, the execu-
tion time is exponential in the number of grid cells. We cannot attain a faster
time without running the risk of failing to find a legitimate pursuer-winning
strategy. From [Reif, 1984], we can conclude that even if we were to use a
different temporal logic, the execution time would still be exponential in the
number of grid cells.

Table 4.1 shows the effect on the execution time and memory displacement
to run SMV on a 933MHz Pentium III system for different-sized grids with one
pursuer and movement only in the four cardinal directions. The attentive reader
will notice that the number of states listed in the table for each configuration

9



Table 1: Time needed to obtain a pursuer search strategy.

Board Number of Pursuer Speed Number of Reachable
Dimensions Locations (moves/turn) States States Time

2× 2 4 2 28.6 26.6 0.01s
2× 4 8 2 213.6 211.1 0.04s
3× 3 9 3 215.2 213.3 0.08s
3× 5 15 3 221.9 217.6 0.66s
4× 4 16 4 223.3 219.4 5.39s
4× 6 24 4 231.9 223.3 7m 26s
5× 5 25 5 233.2 225.7 2h 4m 3s
5× 7 35 5 243.7 ?? > 24h
6× 6 36 6 245.0 ?? > 24h

is exactly twice the number of states described by Equation 3; this is due to an
extra boolean variable necessitated by our choice of model checker. The number
of reachable states reported by SMV is of interest because of an optimization in
SMV that reduces the execution time to a function of the number of reachable
states. The last two rows of Table 4.1 are incomplete, not because checking
a model with 243.7 states is impossible, but because checking a model with
243.7 states required more time than we were willing to allot for our initial
experiments.

4.2 Heuristics to Reduce the State Space

We are considering heuristics that reduce the size of the state space, albeit at the
cost of potentially excluding pursuer-winning search patterns. We consider this
to be an acceptable trade-off. The benefit is that we can dramatically reduce the
execution time. If the model checker indicates it cannot find a pursuer-winning
search strategy, then one may or may not exist for the conditions checked;
however, if such a search strategy is found, then we know it is a valid search
strategy.

4.2.1 The “Sweep” Heuristic

The first heuristic we present is to break the problem of clearing the grid into the
smaller problem of clearing one column and ending up positioned to clear the
next column, without permitting any undetected evaders to pass into previously-
cleared columns; see Figure 6. This corresponds to the algorithm in the
proof sketch of Section 2.2.1. If it is ever possible for the evader to enter the
westernmost region, then the technique of clearing columns will not compose.
However, if it is possible to accomplish this feat, repeated applications of this

10



Figure 5: Execution time vs. number of reachable states

“clear-column” procedure can be composed to clear the whole grid by sweeping
from one side of the grid to the other. Now, if we only need to model w × n
cells explicitly (where w � m), then the number of states is:

(wn)k · 2wn+1 · (s+ 1) (4)

and the property to check is:

¬E

[
cleared(west)U

( ∧
0≤r<n cleared(r, 0) ∧ cleared(west)∧

clock = 0 ∧ position(pursuer) = (0, 1)

)]
(5)

That is, there does not exist a computation path (“E”) in which the western
region remains cleared until (“U”) all cells in the first explicitly-modeled col-
umn are cleared along with the western region, and the pursuer is positioned
in the southern cell of the second explicitly-modeled column at the start of a
turn. If the specification is not satisfied, then the counterexample can be used
to generate a search pattern that will cause the first modeled column to be
cleared and the pursuer positioned to clear the next column at the beginning
of its turn. Repeated application of this search pattern will eventually sweep
the entire grid.

We have, in fact, used such models with a model checker. Using this heuris-
tic, we obtained a pursuer-winning strategy for one pursuer moving 6 spaces/turn
on a “∞×6” grid (w = 2) in 76 seconds on a 933 MHz Pentium III [Bohn et al., 2003].
Contrast this with the performance for the 6× 6 grid in Table 4.1.

4.2.2 The “Cleared-Bars” Heuristic

Besides composing subsolutions, we also consider changes to the manner in
which we model the game. For example, many possible states do not bring the

11



(a) Before column
is cleared

(b) After column is
cleared

Figure 6: Abstraction of grid unbounded along the horizontal axis.

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(a) All cells
cleared

except two
at opposite
corners.

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(b) Alternating
cleared and
uncleared

cells.

Figure 7: Examples of undesirable states.

pursuer any closer to winning the game. One such state is the “7-10 split” in
Figure 7(a). Unless the pursuer can move diagonally 8 spaces/turn (or cardi-
nally 14 spaces/turn), then more cells will become uncleared in the next turn
than the pursuer could make cleared. We believe that the resulting state
could have been achieved without passing through this state first. Similarly, the
“checkerboard” in Figure 7(b) is not a useful state, and it not even reachable
without diagonal moves.

So instead of considering whether each cell is cleared, we instead can
define sets of contiguous cleared cells. For example, under the belief that if a
pursuer-winning strategy exists, one exists that “grows” the cleared area as
a set of contiguous bars, we can define the endpoints of cleared cells in each
row (or column) and require that the cleared cells in each row be contiguous
from one endpoint to the other (Figure 8(a)). With this model, the number of
states is:

(mn)2k︸ ︷︷ ︸
pursuers’

locations

· (m+ 1)2n︸ ︷︷ ︸
endpoints

of bars

· (s+ 1)︸ ︷︷ ︸
“clock”

artifact

(6)

12



The first term is raised to the power of 2k instead of k because there are
conditions in which the pursuers’ current and last locations are needed to update
the bars correctly. The middle term is m + 1 instead of m to provide for
“endpoints” when there are no cleared cells in a given row.

Table 4.2.2 contrasts the execution time without a heuristic to that with this
heuristic.

Table 2: Time benefit of “Cleared-Bars” Heuristic.

Board Pursuer Speed Time
Dimensions (moves/turn) Cleared-Cells Cleared-Bars

4× 4 4 5.39s 1.69s
5× 5 5 2h 4m 3s 32.27s
6× 6 6 > 24h 32m 56s

4.2.3 The “Cleared-Regions” Heuristic

Alternatively, we might instead define the cleared regions geometrically by
possibly-overlapping convex polygons. Figure 8(b) shows how the cleared

area in Figure 2(a) can be described using three rectangles. While this will
dramatically increase the complexity of the model description, we believe it
will also dramatically decrease the number of states in the model. Consider,
for example, a game with k pursuers moving s spaces/turn, with r rectangles
describing the cleared regions. The size of the state space would be:

(mn)k︸ ︷︷ ︸
pursuers’

locations

· (mn)2r︸ ︷︷ ︸
diagonal

corners of

rectangles

· (s+ 1)︸ ︷︷ ︸
“clock”

artifact

(7)

Under the belief that if a pursuer-winning strategy exists, one exists when r is
a small constant, this heuristic should offer substantial runtime improvement.

5 Conclusions and Future Work

We have shown how we can model the problem of UAVs searching for ground
targets as a pursuer-evader game, and we have shown how we can use model
checking to generate pursuer-winning search strategies when they exist. After
considering the complication that the execution time is exponential in the size
of the grid, we presented three heuristics to reduce the time to obtain search
strategies, and the two that have been implemented have provided significant
reductions in the execution time, and the third promises an even greater savings.

13



0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(a) Using
cleared bars

0 1 2 3 4 5

0 

1 

2 

3 

4 

5 

(b) Using
cleared regions.

Figure 8: Alternate ways to describe the configuration of Figure 2(a).

We plan to add additional heuristics to our arsenal. Once we have the
state space growth managed, our work will address improving the fidelity of
the model, such as by increasing the size of the grids, by permitting concur-
rent movement of the pursuers and evaders, and by placing restrictions on the
pursuers’ maneuverability.

Acknowledgments

The authors gratefully thank the US Air Force and the Air Force Institute of
Technology for their direct support of the primary author. This work was sup-
ported by the AFRL/VA and AFOSR Collaborative Center of Control Science
(Grant F33615-01-2-3154).

References

[Baum, 2002] Baum, M. (2002). A search-theoretic approach to cooperative
control for uninhabited air vehicles. Master’s thesis, The Ohio State Univer-
sity.

[Bohn and Sivilotti, 2004] Bohn, C. A. and Sivilotti, P. A. G. (2004). Upper
bounds for pursuer speed in rectilinear grids. Technical Report OSU–CISRC–
1/04–TR01, The Ohio State University.

[Bohn et al., 2003] Bohn, C. A., Sivilotti, P. A. G., and Weide, B. W. (2003).
Using model checking to find a hidden evader. In Proceedings, Workshop on
Agent/Swarm Programming, pages 1–7.

[Clarke et al., 1999] Clarke, Jr., E. M., Grumberg, O., and Peled, D. A. (1999).
Model Checking. The MIT Press.

14



[Kanchanavally et al., 2004] Kanchanavally, S., Ordóñez, R., and Layne, J.
(2004). Mobile target tracking by networked uninhabited autonomous ve-
hicles via hospitability maps. Submitted to American Control Conference.

[Office of the Secretary of Defense, 2002] Office of the Secretary of Defense
(2002). Unmanned aerial vehicles roadmap: 2002–2027.

[Oğraş, 2002] Oğraş, Ü. Y. (2002). Cooperative search strategies for multi-
vehicle teams. Master’s thesis, The Ohio State University.

[Reif, 1984] Reif, J. H. (1984). The complexity of two-player games of incom-
plete information. Journal of Computer and System Sciences, 29(2):207–301.

[Zhang and Ordóñez, 2003] Zhang, C. and Ordóñez, R. (2003). Decentralized
adaptive coordination and control of uninhabited autonomous vehicles via
surrogate optimization. In Proceedings, American Control Conference, pages
2205–2210.

15


